supervised study - перевод на испанский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

supervised study - перевод на испанский

MACHINE LEARNING TASK OF LEARNING A FUNCTION THAT MAPS AN INPUT TO AN OUTPUT BASED ON EXAMPLE INPUT-OUTPUT PAIRS
Supervised classification; Supervised machine learning; Supervised Machine Learning; Fully-supervised machine learning; Applications of supervised learning; Algorithms for supervised learning; Generative training

supervised study      
Estudio supervisado
study skills         
  • A student using the PQRST method.
APPROACHES APPLIED TO LEARNING
Study skill; Study Skills; Skills in studying; PQRST (study skill); Study techniques; Study strategies
(n.) = técnicas de estudio, metodología de estudio
Ex: It is now becoming accepted that library skills could and should be taught in conjunction with associated study skills.
study hall         
A PLACE AND/OR TIME DURING THE SCHOOL DAY WHERE STUDENTS ARE ASSIGNED TO STUDY WHEN THEY ARE NOT SCHEDULED FOR AN ACADEMIC CLASS
Study Hall
sala de estudios

Определение

study hall
¦ noun N. Amer. the period of time in a school curriculum designated for study and the preparation of homework.

Википедия

Supervised learning

Supervised learning (SL) is a machine learning paradigm for problems where the available data consists of labeled examples, meaning that each data point contains features (covariates) and an associated label. The goal of supervised learning algorithms is learning a function that maps feature vectors (inputs) to labels (output), based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way (see inductive bias). This statistical quality of an algorithm is measured through the so-called generalization error.